Ruthenium Complexes containing Group 5B Donor Ligands. Part 4.1 Synthesis, Crystal and Molecular Structure of def-Tri-µ-chloro-h-diphenvlphosphinito-*bgi*-tris(diphenylphosphinous acid)-*ac*-bis(methyl diphenylphosphinite)diruthenium(")

By Robert O. Gould,* C. Lynn Jones, Wilma J. Sime, and T. Anthony Stephenson,* Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ

Pyrolysis of solutions containing [{P(OMe)Ph₂}₃RuCl₃Ru{P(OMe)Ph₂}₃]Cl for 12 h at 120 °C gives yellow crystals (1) shown by X-ray diffraction analysis to be $[{P(OMe)Ph_2}_2{P(OH)Ph_2}_RuCl_3Ru{P(OH)Ph_2}_2(Ph_2PO)]$. The crystals are monoclinic, space group $P2_1/c$ with $\dot{a} = 13.19$, b = 21.98, c = 24.98 Å, $\dot{\beta} = 109.40^\circ$, and contain one molecule per asymmetric unit. The structure was solved using 1 534 film data, and refined to R 0.11. Related pyrolysis reactions give the compounds $[{P(OEt)Ph_2}_2{P(OH)Ph_2}RuCl_3Ru{P(OH)Ph_2}_2$

and $[{P(OEt)Ph_2}_2{P(OH)Ph_2}RuBr_3Ru{P(OH)Ph_2}_2{Ph_2PO}]$ (3).

IN recent years, a number of ruthenium(II) complexes containing tertiary phosphinites P(OR)R₂¹ and phosphonites $P(OR)_2 R^1$ have been synthesised. These include compounds such as [RuH₂{P(OEt)₂Ph}₄],² [RuCl₂- $\{P(OMe)_2Ph\}_4]$,³ $[RuCl_2\{P(OR)Ph_2\}_3]$ (R = Me, Et),³ $[RuH{P(OR)_2Ph}_5]X (R = Me, Et; X = [PF_6]^-; {}^4R =$ Me, $X = [BPh_4]^{-5,6}$, $[Ru\{P(OMe)_2Ph\}_6][BPh_4]_2,^6$ and $[L_3RuX_3RuL_3][BPh_4]$ $[L = P(OMe)_2Ph, P(OMe)Ph_2,$ $X = Cl; L = P(OEt)_2Ph, P(OEt)Ph_2; X = Cl, Br].^6$

However, unlike the related tertiary phosphines, no neutral dimeric or anionic complexes of type [L₃RuX₃- RuXL_2] or $[\operatorname{L}_3\operatorname{RuX}_3\operatorname{RuL}_3][\operatorname{RuX}_3\operatorname{L}_3]$ $[\operatorname{L} = \operatorname{P}(\operatorname{OR})\operatorname{R}_2^1$ or $P(OR)_2R^1$] are known \dagger and therefore, the aim of this present work was an attempt to synthesise such compounds.

RESULTS

Several years ago, Prince and Raspin⁸ demonstrated that the pyrolysis products of [(PEt₂Ph)₃RuCl₃Ru-(PEt₂Ph)₃]Cl were dependent upon the solvent media and the temperature of pyrolysis. Thus, in propyl propionate at 60 or 120 °C or methyl acetate at 120 °C, [(PEt₂Ph)₃RuCl₃RuCl(PEt₂Ph)₂] was formed ⁹ whereas in methyl acetate at 60 °C, [Ru₂Cl₃(PEt₂Ph)₆][RuCl₃-(PEt₂Ph)₃]¹⁰ was produced.

Thus, by analogy with that work, the yellow solution obtained from the reaction of $[{RuCl_2(C_7H_8)}_n]$ and $P(OMe)Ph_2$ in methanol, which contains $[{P(OMe)Ph_2}_3-$ RuCl₃Ru{P(OMe)Ph₂}₃]Cl,⁶ was reduced in volume and then pyrolysed at 120 °C for 12 h. The resulting bright yellow crystalline solid (1) was shown by e.s.r. and magnetic measurements to be diamagnetic and the farinfrared spectrum (400-200 cm⁻¹) was very similar to [{P(OMe)Ph₂}₃RuCl₃Ru{P(OMe)Ph₂}₃][BPh₄], containing only a broad band at 260 cm⁻¹, indicating that (1) probably contains a triple chloride bridge but no terminal chlorides. However, the infrared spectrum (4 000-400 cm⁻¹) revealed extra features not present in the spectrum of the ionic dimer, e.g. a broad band at 3250 cm⁻¹ and strong bands at 1 090, 920 and 855 cm⁻¹, suggesting the presence of Ph₂POH and Ph₂PO⁻ groups ¹¹ in addition to P(OMe)Ph₂. The same compound was obtained if the pyrolysis reaction was carried out at 60 °C. Although a full elemental analysis of (1) was obtained, the compound was too insoluble and involatile for n.m.r. or mass spectroscopy, or molecular weight studies. Therefore, an X-ray structural determination of (1) was undertaken, the results of which are described below. Final parameters are in Table 1. Structure-factor tables are deposited as Supplementary Publication No. SUP 21929 (5 pp., 1 microfiche).[‡] Selected bond lengths are given in Table 2, and mean values of chemically equivalent angles in Table 3. A view of the molecule, showing only one atom for each phenyl ring, is given in Figure 1.

DISCUSSION

Unlike the expected neutral dimer $[{P(OMe)Ph_2}_3 RuCl_{3}RuCl\{P(OMe)Ph_{2}\}_{2}]$, (1) contains two methyl diphenylphosphinite groups and four other oxyphosphorus ligands. The diamagnetism of the compound and the long Ru ···· Ru distance (3.425 Å), which indicate no direct metal-metal interaction,¹² suggest a ruthenium(II) complex. One half of the dimer contains both methoxy-groups and interatomic distances suggest that a proton on O(1) interacts primarily with O(5). In the other half-molecule, there must formally be one Ph₂PO⁻ group and two Ph₂POH groups. The most plausible

J. R. Sanders, J.C.S. Dalton, 1973, 743.

J. J. Hough and E. Singleton, J.C.S. Chem. Comm., 1972. 371.

⁶ D. A. Couch and S. D. Robinson, *Inorg. Chem.*, 1974, **13**, 456. ⁷ B. Jezowska-Trzebiatowska, H. Ratajczak, P. Sobota, and R. Tyka, Bull. Acad. polon. Sci., Ser. Sci. chim., 1972, 20, 869.

R. H. Prince and K. A. Raspin, J. Inorg. Nuclear Chem.,

1969, **31**, 695. • N. W. Alcock and K. A. Raspin, J. Chem. Soc. (A), 1968, • N. W. Alcock and K. A. Raspin, *ibid*, 1969, 612

2108; R. H. Prince and K. A. Raspin, *ibid.*, 1969, 612.
¹⁰ K. A. Raspin, J. Chem. Soc. (A), 1969, 461.

For detailed references, see J. Chatt and B. T. Heaton, J. Chem. Soc. (A), 1968, 2745.
M. M. Crozat and S. F. Watkins, J.C.S. Dalton, 1972, 2512.

[†] The diamagnetic complexes $P(OEt)_3$, $P(OMe)Ph_2$, $P(OEt)_2Ph]$ direct reaction of $RuCl_3$ with L.? $[Ru_2Cl_3L_6][RuCl_4L_2] \quad [L = have been synthesised by$ direct reaction of $RuCl_3$ with $L.^7$ However, as written, these contain paramagnetic ruthenium(III) anions and therefore, it is more likely that they should be reformulated as $[Ru_{2}Cl_{3}L_{6}]Cl$ or even $[Ru_{2}Cl_{3}L_{6}][RuCl_{3}L_{3}]$ complexes.

For details see Notices to Authors No. 7, in J.C.S. Dalton, 1976, Index issue (items less than 10 pp. are supplied as full-size copies).

¹ Part 3, P. W. Armit, W. J. Sime, and T. A. Stephenson, *J.C.S. Datton*, 1976, 2121. ² D. H. Gerlach, W. G. Peet, and E. L. Muetterties, *J. Amer.*

Chem. Soc., 1972, 94, 4545. ³ W. J. Sime and T. A. Stephenson, unpublished work.

arrangement is to place protons on O(2) and O(4), both of which interact with a negative charge on O(3). In two compounds, similar arrangements of atoms have been confirmed by X-ray analysis, and others probably exist¹³⁻¹⁶ [Figures 2 (ref. 15) and 3 (ref. 16)]. Pyrolysis of the yellow solution obtained from the and which analysed very well for [{P(OEt)Ph₂}₂{P(OH)- Ph_{2} RuCl₃Ru{P(OH)Ph₂}₂(Ph₂PO)]. The same compound (2) was also obtained if PClPh₂ is refluxed with [RuCl₂(PPh₃)₃] in aqueous ethanol whereas in hexane, earlier studies 17 showed that [(PCIPh2)3RuCl3RuCl- $(PClPh_2)_2$ is formed. Crystals of (2) are orthorhombic,

TABLE 1

Fractional co-ordinates ($\times 10^4$) and thermal parameters ($\times 10^3/\text{Å}^2$) for (1).	Mean estimated standard deviations are Ru,
0.004; Cl, 0.012; P, 0.015; O, 0.04; C(methyl), 0.07;	and ring centres, 0.03 Å

Atom	x	у	z	U		Atom	x	у	z	U
Ru(1)	1 796	2 568	3 295	*		C(30)	-347	4 211	3 018	208
Ru(2)	2 169	2 546	4718	*		C(31)	1 610	3 981	2627	49
Cl(Ì)	2 762	1 885	4 074	*		C(32)	1 989	4 418	3054	118
C1(2)	2 611	3 301	4 077	*		C(33)	2 4 3 2	4 961	2 942	122
Cl(3)	560	2 521	3 851	*		C(34)	2 495	5 068	2 401	78
P(1)	940	1 790	2 737	69		C(35)	2 115	4 632	1 973	178
P(2)	3 060	2 612	2 858	62		C(36)	1 673	4 088	2 086	115
P(3)	865	3 269	2 686	40		C(37)	4 462	3 350	5 464	38
P(4)	3 705	2 658	5431 5145	49		C(38)	0 042 5 500	3 031	5 119	801
P(5)	1 342	3 199	0 140 5 175	59 57		C(39)	5 590 5 559	4 087	0 208 5 855	209
P(0)	1 744	1 /0/	0110	57		C(40)	0 000	4 404	6 007	155
	2 679	2 037	£ 030	145		C(41)	4 4 3 0	3 725	5 911	143
O(2)	1 905	3 145	5 805	93		C(43)	4 840	2 186	5 529	64
O A	1 619	1 896	5 758	65		C(44)	5 451	1 989	6 074	173
Õ(ŝ)	1 231	1 732	2 156	70		C(45)	6 332	1 603	6 146	205
O(6)	414	3 040	2 061	74		C(46)	6 602	1 4 1 6	5 675	108
čůí	4 054	3 238	3 017	86		C(47)	5 990	1 613	5 131	231
C(2)	4 612	$3\ 516$	3 536	148		C(48)	5 1 1 0	1 999	$5\ 058$	103
C(3)	$5\ 258$	4 026	3 549	131		C(49)	1 540	4 040	4 983	50
C(4)	5 346	$4\ 256$	3 045	150		C(50)	1 170	4 319	4 450	296
C(5)	4 787	3 978	2526	268		C(51)	l 244	4952	4 406	236
C(6)	4 1 4 2	3 469	2 513	177		C(52)	1 689	5 304	4 894	174
C(7)	4 0 2 6	1 967	2 975	112		C(53)	2 058	5 024	5 428	233
C(8)	3984	1 608	2 505	150		C(54)	1 984	4 392	5 473	279
C(9)	4 670	1 107	2 572	196		C(55)	44	3 098	5 050	40
C(10)	5 398	966	3 109	166		C(56)		2 869	5 400	89
C(11)	5 440	1 324	3 370	107		C(57)	-1042	2 / /8	0 040	121
C(12)	4 / 04	1 829	3 312	100		C(58)	-2 205	2 910	4 190	101
C(13)	034	1 770	2 4 / 4	44		C(80)	1 800	3 926	4 505	88
C(14) C(15)	-9 204	1 779	2 680	132		C(61)	2 634	1 091	5 325	41
C(16)	-2782	1 819	2 099	126		C(62)	3 245	990	5 893	67
C(17)	-2235	1 835	1 705	226		C(63)	4 010	522	6 037	110
C(18)	-1111	1 810	1 892	115		C(64)	4 161	157	5 611	113
Č(19)	1 304	1 017	3 009	84		C(65)	3 549	258	5 042	61
C(20)	2 367	818	3 146	60		C(66)	2 785	726	4 899	59
C(21)	2650	232	3 361	86		C(67)	514	1 334	4 894	78
C(22)	1869	-156	3 439	133		C(68)	151	1 236	$5\ 220$	438
C(23)	804	43	3 302	184		C(69)	-1080	881	$5\ 004$	435
C(24)	522	630	3 08 6	137		C(70)	-1343	626	4 462	188
C(25)	-292	3 624	2814	107		C(71)	-677	725	4 136	346
C(26)	-1178	3 233	2 697	109		C(72)	252	1.078	4 352	205
C(27)	-2119	3 431	2 784	223		C(73)	- 560	3 275	1 618	137
C(28)	-2174	4 019	2 990	175		C(74)	1 1 3 8	1 189	1 758	129
C(29)	-1289	4 409	3 100	193						
	. * P	inisotropic the	rmai paran	leters						
		Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}		
		Ru(1)	61	27	47	9	18	12		
		Ru(2)	63	16	45	-1	16	-5		
		CI(1)	68	13	52	1	6	-7		
		CI(2)	32	27	50	13	27	4		
		UI(3)	90	04	44	10	ø	4		

reaction of $[{RuCl_2(C_7H_8)}_n]$ and $P(OEt)Ph_2$ in ethanol also gave an insoluble, crystalline yellow solid (2) whose infrared spectrum contained all the additional features found for (1) [plus bands characteristic of P(OEt)Ph2],

structure, and the calculated density $(1.50 \,\mathrm{g}\,\mathrm{cm}^{-3})$ indicates

a = 26.01, b = 43.79, c = 24.56 Å, space group *Fddd* (No.

70). Photographs indicate a substantially disordered

13 K. R. Dixon and A. D. Rattray, Canad. J. Chem., 1971, 49, 3997. ¹⁴ W. B. Beaulieu, T. B. Rauchfuss, and D. M. Roundhill, Inorg. Chem., 1975, 14, 1732, and refs. cited therein.

¹⁶ D. V. Naik, G. J. Palenik, S. Jacobson, and A. J. Carty, J. Amer. Chem. Soc., 1974, 96, 2286.
¹⁶ M. C. Cornock, R. O. Gould, C. L. Jones, and T. A. Stephenson, J.C.S. Dallon, in the press.
¹⁷ P. W. Armit, A. S. F. Boyd, and T. A. Stephenson, J.C.S.

Dalton, 1975, 1663.

half a molecule per asymmetric unit ($D_c = 1.50$ g cm⁻³ for Z = 16), suggesting that the molecules are disordered, about a two-fold axis or centre of symmetry.

Furthermore, if the yellow solution containing the $[{P(OEt)Ph_2}_3RuCl_3Ru{P(OEt)Ph_2}_3]^+$ cation is treated

TABLE 2

Selected bond lengths in (1). Estimated standard deviations are: Ru-Cl, 0.015; Ru-P, 0.018; P-O, 0.05; P-C, 0.07; and O-C, 0.09 Å

Ru(1)-Cl(1)	2.454	Ru(2)- $Cl(1)$	2.478
Ru(1) - Cl(2)	2.484	Ru(2) - Cl(2)	2.507
Ru(1)-Cl(3)	2.471	Ru(2) - Cl(3)	2.478
$\mathbf{Ru}(\mathbf{l}) - \mathbf{P}(\mathbf{l})$	2.258	Ru(2) - P(4)	2.222
Ru(1) - P(2)	2.277	Ru(2) - P(5)	2.271
Ru(1) - P(3)	2.226	Ru(2) - P(6)	2.248
P(1)-O(5)	1.63	P(4) - O(2)	1.54
P(1) - C(13)	1.83	P(4) - C(37)	1.81
P(1) - C(19)	1.83	P(4) - C(43)	1.77
P(2) - O(1)	1.52	P(5) - O(3)	1.57
P(2) - C(1)	1.85	P(5) - C(49)	1.93
P(2) - C(7)	1.86	P(5) - C(55)	1.78
P(3) - O(6)	1.56	P(6) - O(4)	1.55
P(3) - C(25)	1.83	P(6) - C(61)	1.84
P(3)-C(31)	1.88	P(6) - C(67)	1.80
O(5) - C(74)	1.53		
O(6)-C(73)	1.48		
$O(1) \cdots O(5)$	2.66	$O(2) \cdots O(3)$	2.54
$O(1) \cdots O(6)$	2.92	$O(2) \cdots O(4)$	2.97
$O(5) \cdots O(6)$	3.05	$O(3) \cdots O(4)$	2.77

TABLE	3
-------	---

(a) Selected bond angles in (1). Estimated standard deviations are 0.5° for all angles given

Cl(1) - Ru(1) - Cl(2)	78.3	Cl(1)- $Ru(2)$ - $Cl(2)$	77.5
Cl(1) - Ru(1) - Cl(3)	78.1	Cl(1) - Ru(2) - Cl(3)	77.5
Cl(1) - Ru(1) - P(1)	92.7	Cl(1) - Ru(2) - P(6)	93.6
Cl(1) - Ru(1) - P(2)	97.8	Cl(1) - Ru(2) - P(4)	100.7
Cl(1) - Ru(1) - P(3)	171.5	Cl(1) - Ru(2) - P(5)	168.3
Cl(2) - Ru(1) - Cl(3)	77.2	Cl(2) - Ru(2) - Cl(3)	76.7
Cl(2) - Ru(1) - P(1)	166.8	Cl(2) - Ru(2) - P(6)	170.4
Cl(2) - Ru(1) - P(2)	98.9	Cl(2) - Ru(2) - P(4)	95.5
Cl(2) - Ru(1) - P(3)	94.9	Cl(2) - Ru(2) - P(5)	97.6
Cl(3) - Ru(1) - P(1)	91.6	Cl(3) - Ru(2) - P(6)	98.1
Cl(3) - Ru(1) - P(2)	174.8	Cl(3) - Ru(2) - P(4)	172.1
Cl(3) - Ru(1) - P(3)	95.5	Cl(3) - Ru(2) - P(5)	91.1
P(1) - Ru(1) - P(2)	91.8	P(6) - Ru(2) - P(4)	89.6
P(1) - Ru(1) - P(3)	93.0	P(6) - Ru(2) - P(5)	90.5
P(2) - Ru(1) - P(3)	88.2	P(4) - Ru(2) - P(5)	9 0.3
	$\operatorname{Ru}(1)$ - $\operatorname{Cl}(1)$ - $\operatorname{Ru}(2)$	87.9	
	$\operatorname{Ru}(1)$ - $\operatorname{Cl}(2)$ - $\operatorname{Ru}(2)$	86.6	
	$\operatorname{Ru}(1)$ - $\operatorname{Cl}(3)$ - $\operatorname{Ru}(2)$	87.5	

(b) Mean values of chemically distinct angles in (1)

Atoms	Angle/°	Number	Estimated standard deviation
RuClRu	87.3	3	0.6
Cl-Ru-Cl	77.6	6	0.5
P-Ru-Cl(cis)	95.6	12	3.0
P-Ru-Cl(trans)	170.6	6	1.5
P-Ru-P`´´	90.6	6	0.8
Ru-P-O	113.8	6	1.0
Ru-P-C	118.7	12	1.0
O-P-C	101.6	12	1.5
C-P-C	99	6	3
Р-0-С	128	2	5

with an excess of lithium bromide before pyrolysis, the resulting yellow, crystalline solid (3) analyses very well for $[{P(OEt)Ph_2}_2{P(OH)Ph_2}RuBr_3Ru{P(OH)Ph_2}_2-(Ph_2PO)].$

As expected, $[{P(OR)Ph_2}_3RuCl_3Ru{P(OR)Ph_2}_3]$ -

[BPh₄] (R = Me or Et) was recovered unchanged after pyrolysis. However, for [{P(OEt)Ph₂}₃RuCl₃Ru{P-(OEt)Ph₂}₃]X (X = [SCN]⁻, [CN]⁻, or [S₂PMe₂]⁻), pyrolysis gave yellow solids whose infrared spectra are identical with (2). This suggests that the first step is nucleophilic attack of [X]⁻ on a co-ordinated alkoxygroup to give a Ph₂PO⁻ group and RX. This is presumably followed by stepwise hydrolysis of some of the P(OR)Ph₂ groups, the partially hydrolysed product then precipitating out because of its insolubility. Attempts

FIGURE 1 Structure of $[{P(OMe)Ph_2}_2{P(OH)Ph_2}RuCl_3Ru{P(OH)Ph_2}_2(Ph_3PO)] (1)$

FIGURE 2 Structure of $[(Ph_2PO)_3HPd(SCN)_2Pd(Ph_2PO)_2H]$ (ref. 15)

FIGURE 3 Structure of [Pd(S₂PMe₂)(Ph₂PO)₂H] (ref. 16)

to make (1), (2), or (3) undergo further reactions or to synthesise the corresponding phosphonite complexes have proved unsuccessful to date.

EXPERIMENTAL

Microanalyses were by B.M.A.C. and the University of Edinburgh Chemistry Department. I.r. spectra were

recorded in the region 4 000-200 cm⁻¹ on Perkin-Elmer 225 and 557 grating spectrometers using Nujol and hexachlorobutadiene mulls on caesium iodide plates. Magnetic measurements were made on a Faraday balance. Melting points were determined with a Köfler hot-stage microscope and are uncorrected. Standard crystallographic calculations were performed at the Edinburgh Regional Computing Centre.18

Crystal Data.— $C_{74}H_{69}Cl_3O_6P_6Ru_2$, M = 1549, yellow monoclinic plates, a = 13.19(1), b = 21.98(2), c = 24.98(2)Å, $\beta = 109.4(1)^{\circ}$, U = 6 831 Å³, $D_{\rm m} = 1.45$ g cm⁻³, Z = 4, $D_{\rm c}=1.49~{\rm g~cm^{-3}}.$ Space group $P2_1/c$ (No. 14), Cu- K_{α} radiation, $\lambda = 1.5418$ Å; $\mu(Cu-K_{\alpha}) = 65$ cm⁻¹.

Structure Determination .- Data were collected from a single crystal, a plate of thickness 0.15 mm and crosssection 0.16 mm², using multiple film packs. Data for layers 0-5kl were collected by the equi-inclination Weissenberg method, and limited data for layers hk0-2 by the precession method. The photographs were of poor quality, and suggested disorder in the crystal. The films were scanned using rotating-drum film scanners, the Weissenberg on an Optronics instrument, and the precession on a Saab. Merging of the data gave 1 534 independent reflections significantly above background.

The positions of two independent ruthenium atoms, both having $y \ ca. 0.25$, were determined from the Patterson function, and the subsequent difference-Fourier synthesis (R 0.41) had significant pseudo-symmetry. The choice of three positions for chlorine atoms enabled all phosphorus and oxygen atoms to be found in subsequent difference syntheses. The phenyl groups could only be located approximately, and were refined as idealised groups with all C-C bonds 1.40 Å and all C-C-C angles 120°. At this stage the two terminal methyl groups were clearly indicated, but no attempt was made to locate hydrogen atoms. With phenyl groups constrained as above, and anisotropic thermal parameters for Ru and Cl only, the structure was refined treating the parameters in two large blocks, to convergence at R 0.11. Weights were of the form W = X.Y with X = $\sin\theta/0.3$ for $\sin\theta < 0.3$, and 1.0 otherwise, and Y = 100/- $|F_0|$ for $|F_0| < 100$ and 1.0 otherwise. A final difference Fourier synthesis did not show any features above one-third the mean height of a carbon atom, and there were broad peaks near the worst determined phenyl rings.

def-Tri-µ-chloro-h-diphenylphosphinito-bgi-tris(diphenylphosphinous acid)-ac-bis(methyl diphenylphosphinite)diruth $enium(II) * (1).-[{(RuCl_2(C_7H_8))_n]^{19} (0.22 g)} was refluxed$ with an excess of P(OMe)Ph₂ (0.50 ml) in methanol (10 ml) for 4 h under nitrogen to give a yellow solution. The solution was filtered to remove any unchanged starting material and then concentrated to a volume of ca. 5 ml. This solution was then pyrolysed in an evacuated, sealed tube at 120 °C for 12 h. The bright yellow crystals formed were

* Following the suggestion in ref. 14, we have used the term diphenylphospinite to describe P-bonded Ph_2PO^- rather than the previously used diphenylphosphinate.

filtered off, washed with methanol and diethyl ether, and dried in vacuo, m.p. >285 °C (Found: C, 56.6; H, 4.5; Cl, 6.5; P, 13.0; Ru, 11.0. Calc. for C₇₄H₆₉Cl₃O₆P₆Ru₂: C, 57.4; H, 4.5; Cl, 6.9; P, 12.0; Ru, 13.0%).

def-Tri-µ-chloro-h-diphenylphosphinito-bgi-tris(diphenylphosphinous acid)-ac-bis(ethyl diphenylphosphinite)diruthenium(II) (2).-(a) Prepared as for (1) by reaction of [{RuCl₂- $(C_{7}H_{8})_{n}$ and $P(OEt)Ph_{2}$ in ethanol followed by concentration and pyrolysis at 120 °C for 12 h, m.p. 225 °C (Found: C, 57.3; H, 4.6; Cl, 6.4; P, 11.9. Calc. for C₇₆H₇₃Cl₃O₆P₆-Ru₂: C, 57.9; H, 4.6; Cl, 6.7; P, 11.8%). (b) [RuCl₂-(PPh₃)₃] (0.20 g) and PClPh₂ (0.50 ml) were refluxed in an ethanol (25 ml)-water (5 ml) mixture. After a few minutes, the solution turned yellow and after 2 h a yellow solid had formed, shown by i.r. spectroscopy and m.p. to be identical with (2) (Found: C, 56.6; H, 4.5. Calc. for C₇₆H₇₃Cl₃O₆- $P_{\theta}Ru_{2}$: C, 57.9; H, 4.6%). (c) [{RuCl₂(C₇H₈)}_n] (0.02 g) was refluxed with excess of P(OEt)Ph₂ in ethanol under nitrogen for 4 h to give a yellow solution. An aqueous solution of KSCN was then added and the mixture allowed to stand for several days during which time the yellow solid tri-µ-chloro-hexakis(ethyl diphenylphosphinite)diruthenium(11) thiocyanate was deposited [v(CN) 2 020 cm⁻¹] (Found: C, 58.2; H, 5.1; N, 0.8. Calc. for C₈₅H₉₀Cl₃NO₆P₆Ru₂S: C, 58.4; H, 5.1; N, 0.8%).

 $[{P(OEt)Ph_2}_3RuCl_3Ru{P(OEt)Ph_2}_3][SCN] (0.20 g)$ was then pyrolysed in n-propyl propionate (5 ml) at 120 °C to give the yellow solid (2).

In a similar fashion, pyrolysis of [{P(OEt)Ph₂}₃RuCl₃Ru- $\{P(OEt)Ph_2\}_3 X (X = [CN]^- \text{ or } [S_2PMe_2]^-) \text{ gave only } (2).$

def-Tri-u-bromo-h-diphenylphosphinito-bgi-tris(diphenylphosphinous acid)-ac-bis(ethyl diphenylphosphinite)diruthenium(II) (3).—[{RuCl₂(C₇H₈)}_n] (0.22 g) was refluxed with excess of P(OEt)Ph₂ (0.50 ml) for 4 h in ethanol to give a vellow solution. This was reduced in volume and an excess of LiBr (0.25 g) added. The mixture was then pyrolysed at 120 °C for 12 h and the resulting yellow crystals filtered off and washed with ethanol and diethyl ether, m.p. 220 °C (Found: C, 52.9; H, 4.3; Br, 13.9; P, 11.4. Calc. for $C_{76}H_{73}Br_{3}O_{6}P_{6}Ru_{2}$: C, 53.4; H, 4.3; Br, 14.0; P, 10.9%).

We thank Johnson Matthey Ltd. for loans of ruthenium trichloride, the S.R.C. for financial support (C. L. J., W. J. S.), the S.R.C. and Dr. M. Elder of the Atlas Computing Laboratory for the scanning of the Weissenberg photographs, Dr. W. D. S. Motherwell of Cambridge University for a molecular plotting program, Dr. G. Hunter of Dundee University for the magnetic measurements, and Dr. R. M. Paton for the e.s.r. measurements.

[6/1399 Received, 16th July, 1976]

¹⁸ 'X-Ray' program system, Technical Report TR 192, Computer Science Center, University of Maryland, version of January 1974, implemented for the I.C.L. 4175 computer at the Edinburgh Regional Computing Centre. ¹⁹ E. W. Abel, M. A. Bennett, and G. Wilkinson, J. Chem. Soc.,

1959, 3178.